UNCLASSIFIED

AD NUMBER

AD881994

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors; Critical Technol ogy; JAN
1971. Ot her requests shall be referred to Air
Force Rocket Propul sion Laboratory, Attn:

DOE STI NFO, Edwards, GA 93523. Thi s docunent
contai ns export-controlled technical data.

AUTHORITY
afrpl Itr, 1 feb 1973

THISPAGE ISUNCLASSIFIED




[HE STUDY OF CRACK CRITICALITY
IN
SOLTD ROCKET MOTORS

Final Report
Submitted to the
Air Force Rocket Propulsion Laboratory
Contract #R) 4611-70-C-0006
AFRPL TR 71-21
January 1971 UTEC DO 71-C41

..\

f ..COLLEGE OF ENGINEERING
~ UNIVERSITY OF UTAH .
"_'-f_:_'"'SALT Lg,xe ay, UTAH 84115




L e - "
O S

e STATINENT 43 UlChlSSIlll’”"ﬁN,._~_h

This dooument 4s subjoect to opsoial export controls and each
transmittsl to foreign government s or foreisn nationals may do

sade only with prior approvel of . .....

AFRPL (DOG/) STiNFE) Eduwnmds . Ga 93523

THE STUDY OF (RACK CRITICALITY
IN
SOLID ROCKET MOTORS

Final Report
Submitted to the

Air Force Rocket Propulsion Laboratory
Contract #R0 4611-70-C-0006 , = ./

AFRPL TR 71-21
Jamuary 1971 UTEC 10 71-041

Principal Investigators
M. L. Williams
H. R. Jacobs

Associate Investigators
G. A. Flandro
R. J. Nuismer

Graduate Research Assistant
T. C. Derbidge

When the U.S. Govermaent drawings, specifications, or other data
are used for any purpose other than a definitely related Govermment
procurement operation, the Govermment thereby incurs no responsibility
nor anv obligation whatsoever, and the fact that the Government may
have formulated, furnished, or in any way supplied the said drawings,
specifications, or other data, is not to be regarded by implication
or otherwise, or in any manner licensing the holder or any other person
Or corporation, or conveying any rights or pemission to manufacture
use, or sell any patented invention that may in any way be related thereto.




——

- +
E II.

ITI.

VI.

TABLE OF CONTENTS

INTRODUCTION
DETERMINATION OF PRESSURE DISTRUBUTION IN
BURNINGS, FLAWS, CRACKS AND DEBONDS
One Dimensional Analysis Including Friction
Approximate Analytical Solution Without

Friction for Speciall Mass Flux Distributions

Effect of Friction on Pressure Prediction
in Cracks and Debords

Evaluation of Two Dimensional Models of

Flow in a Fissure with Combustion
PARAMETRIC STUDY OF THE FRESSURE DISTRIBUTIONS
FOR BURNING CPACKS AND DEBINDS

Effect of Flaw Length and Exit Area on
Crack Tip Pressure

Effect of Assumed Flaw Tip Dimensions
Effect of Burning Rate Law

Typical Increase in Flaw Length with Time,
Assuming no Mechanical Propagation

Half-Time for Tip Pressure Versus Burning Ra

Rate Coefficient

Effect of Variable Geometry, Circular Debonds

TIME HISTORY OF FRACTURE OR DEBONDING IN
VISCOELASTIC MATERIALS

ESTIMATES OF TIME TO FAILURE AND INITIAL PROPAGATION

VELOCITIES IN BURNING FLAWS

Failure Time for Burning Spherical Flaws
in Propellant Grains

Initial Propagation Velocities for Burning
Spherical Flaws in Propellant Grains

CONCLUSIONS
REFERENCES
APPENDIX A
APPENDIX B
APPENDIX C

15

22

25

32

32
32
32

35

44
44

49

74

74

79
80




Pl T TR

L VS

I T —

B e |

I. INTRODUCTION

The existence of flaws in solid propellant grains is a problem that
has plagued the solid rocket motor industry for a considerable time.(l”2 »3)
rlaws may exist in the grain due to unsteady processes during casting,
difficulties in curing, problems in humidity and temperature control, etc.
The surveillance programs that have been under way for several years
indicate that flaws may form due to "aging."(4)

The Air Force Rocket Propulsion Laboratory at its own laboratory and
through its contractors has carried out numerous imrestiga‘t:ions(S 16,7)
dealing with the problem of initiution of burning within flaws ir solid
propcllant grains. Similar studies have been carried out in Japan.(s) and
the United Kingdom. (9) The tests conducted by AFRPL and its contractors
primarily dealt with ignition times and rates of propagation of the flames
into "manufactured cracks' although tests were conducted at Thiokol's Utah
Division in which the fracture was obtained by tearing the propellant. The
tests conducted in Japan were also conducted with manufactured cracks. The
United Kingdom tests conducted at the Explosive Research Development Estab-
lishment were tests in small scale rocket motors with manufactured cracks
and debonds.

Tests have been conducted at Thiokol, Utah Division(6) and at the
Naval Weapons Center, China Lake(lo) dealing with debonds. These tests
were all conducted utilizing a '"half-motor." The "half-motors' were half
of a solid propellant motor and a block of plexiglas joined together to
allow visual observation of the burning processes. Similar unpublished
tests have been conducted by H. R. Jacobs at the University of Utah.(1 1)

All of the above mentioned tests dealing with burning in cracks and
debonds indicated overwhelming statistical evidence that burning would
propagate into cracks ana debonds and that the propagation rates increased
with the external or chamber pressure. In some of the half-motor tests
catastrophic failure occurred. (10)




The present study, which was the result of an unsolicited proposal,
had as its primary objective the detemination of whether the pressures
which develop in burning flaws, cracks and debonds are sufficient to
cause the defect to propagate due to mechanical failure of the propellant.

The University of Utah in its investigation was directed to assume
that the defect surface was ignited. With this assumption, it was
further assumed that the size, shape and nature of the initial defect
were known.

In order to carry out the proposed study a qualitative investigation
of the governing parameters was first conducted. The critical parameters
are, in addition to propellant characteristics, main chamber pressure and
defect geometry, the main chamber gas velocity, the gas velocity within
the defect, the burning rate of the wall, and the fracture propagation
velocity.

If the burning rate of the material is greater than the crack propa-
gation velocity, the defect tip will be "burned out' before it can be
propagated due to mechanical failure. If the surface burning of the defect
area is large compared to its cross-sectional area at its exit plane, then
the velocity of the burned gaseous effluent will in general be lurger
than that external to the defect and there will be no net flow in.o the
defect but only a flow-out. The most important flow is that of the
effluent gases, for it is this velocity whic* determines the pressure
field within the flaw. For most solid propellants the combustion rate is

pressure dependent. The stress field around the defect is also dependent
upon the pressure, and hence, the presence of '‘cracking' and its propagation
speed.

The pressure distribution in a burning defect will vary with time
because the defect geometry is being continually changed by burning at
the walls. In addition cracking, if it occurs, will alter the geometry
and thus change thepressure distribution. Despite these facts, a true
transient analysis is not necessary if the geometry change is slow
compared to the velocity of the combuction products within the flaw. In
general, the propellant burning rate is on the order of 10-1 fps while
that of the gas velocity is on the order of 102 fps; therefore, in regard
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to the burning wall, a quasi-steady amnalysis is justifiable. The quasi-
steady analysis as related to crack propagation speed is reasonable if the
crack propagation velocity is either much slower than the gas velocity or
if the defect remains stable for a length of time and then propagates to a
new stable geometry which is instantaneously ignited. With these facts in
mind, the current study has limited the gas phase study tc a quasi-steady
analysis to determine the instantaneous pressure distribution in a burming
defect in a solid propzllant grain,

Primarily, the analyses to determine pressure distributions have
been limited to one dimensional analyses. These analyses are applicable
primarily to flaws with large burning surface area compared to the exit
flow area.

A two-dimensional analysis was carried out to detevmine the effect of
two dimensions on triangular cracks with small angles of divergence. The
results of this analysis which have been included in Section II justifies
the one-dimensional assumption.

A parametric study was conducted to determire the effects of geometry
and fuel characteristics on pressures within cracks and debonds (burning on
one side of the crack only) and is reported in Section III. Also included
in this section is a study indicating typical times required for the
pressure at the crack tip to decrease by a factor of two and indications of
crack geometry changes with time.

Section IV of the report summarizes the work for cracks in pressurized
cylinders conducted to determine criticality conditions by the use of time-
dependent stress intensity factors. Methods of determining times to failure
for a pressurized crack and means of determining initial crack propagation
velocities through the use of a thermodynamic power balance are also included.

Section V compares crack propagation velocity estimates to the propellant
burning rate for TPH-10i1 and estimates of times to failure, while Secticn
VI summarizes the conclusions of this program.
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I1. DETERMINATION OF PRESSURE DISTRIBUTION
IN BURNING FLAWS, CRACKS AND DEBONDS

"NE-DIMENSIONAL ANALYSIS INCLIDING ERICTION
The relations governing the state of the flow are independent cf
peometry and are stated below:

quation of State P = oRT (1)
Energy he udf2 = h, (2)
Heat Capacity b~ B & Cp‘l' (3)

In the energy equation it is assumed that the mass addition is accomplished
at constant enthalpy and negligible kinetic energy. This a reasonable
assumption for a burning surface if the combustion zone is assumed infinitely
thin and at the surface. It is also assumed that the flow is adiabatic.
The latter is a good assumption for solid propellant grains which release
considerahle energy and are notahly poor conductors. The specific heat and
viscosity are assumed constant, implying that no chemical reaction takes
place after the gas is added to the stream.

The onc-dimensional momentum equation is

: ds ds
IrEE - & - fwb—;,% -ty = G W 4)

The change of y with x, dy/dx, is assumed small to insure one-dimensionality
and since normal burning is assumed the x component of momentim of the small

mass, dm, added over the length dx, is megligibly small. The variation
of flow area, A, and differential surface area, dS, with x, is of the form

L
A - y()x (5a)
ds -~ x*dx (5b)
where the exponent ¢ may assume the values 0 or 1.0 depending on how the

channel depth varies with x.  To elucidate this point consider the conical

shaped duct illustrated in Figure 1.

t
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Cross-sectional View

Figure 1. Conical duct

The area at any r, is given by-

A = 2mr (6a)

where

r = rI,°x (6b)

and; therefore, this geometry corresponds to % = 1,

Three types of geometries, which appear frequently in application and
to which Equation 4 applies are illustrated in Figure 2.

The geometry labeled "crack" represents a one-dimensional model of a
deep flaw within the propellant grain itself. The debond geometry is the
one-dimensional model of a separation between the propellant grain and the
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Crack in Propellant Grain

/////////Z

Debond of Grain from Casing
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Circular Debond at Grain Head End

Figure 2. Three flaw types which appear frequently in application
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cylindrical portion of the casing, while the circular debond is the model
of a similar separation between the grain and the hemispherical bulkhead of
the casing.

Cbservation of Figure 2 yields the following specific forms for A and dS

Crack A=y
.ﬂsn = 0
ds, = 2
Deband A=y (7

2 dsb = _dsn = dx
Circular Debord A

s},

The fact that surface area, dS, may be directly related to distance along the
flaw, dx, follows frum the asmption that dy/dx is small.

The general momentum eyuation contains wall shear stress terms which
must be related to more readily measurabls quantities. Two tvpes of wall
shear stress are encountered; shear at a burming wali, Toiy? and shear at
a2 non-burning wall, T Both types of wall shear stress are assumed to
be approximated by 2 relation of the form

2ny(x, - x)
ﬂSn = 21r(1'0 -x)dx

v, = 7 it (8)
The friction factor, f, fur the non-burning wall is solely a function of
Reynold's mumber. The friction factor, fb, for the burning wall is dependent
both on Reynold‘s number and the mass addition rate since this mass addition
tends to "blow" the boundary layer away from the wall and thus reduce wall
shear stress. Reference 12 has reported a correlation between friction factor

for external fiow with pressure gradient and non-dimensional blowing rate,
Br’ where

-7-
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and Rex is the Reynold's number based upon the distance, x, from the
leading edge. In the problem at hand,which more closely resembles ¥
pipe flow than boundary layer flow, it is more reasonable to base the
Reynold's number orn the local hydraulic diameter.
For a parallel slot the characteristic length used is the crack
(or debond) height, y.
R = 2 (10)

e H

Since the problem under consideration is one-dimensional e, = Pg = P
and the nommal velocity at the wall, Vw, can be evaluated by considering a

differential wall length dx, in which case one has

.dm = p Vw dx (1}

Utilizing the above relation in Equation 9 one obtains

B = 1_ -g_lh_ 12
r ou dx /R; (12)
The correlation of Reference 12 may be approximated to obtain a

friction factor with mass addition of the form

f, = Hf (13a)
where
1 1 1
o 7 [:rrrm* 7] k)

Equations 8, 13a, and 13b determine the wall shear stress on both burning
and non-burning walls once the functional relationship between the friction
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factor, f, and the Revnolds mumber, Re’ is obtained This functional relation
is of two basic types depending on whether the flow is laminar or turbulent,
For laminar flow the relation is

9
£ =2 (14a)
e
and for turbulent flow
£Fa 0.316 (24b)
| Re

Substituting Equations 7, &, and 13a into the general momentum
equation, one obtains the specific momentum equations for the geometries of

Figure Z as
Crack YE - foulH = &) (15a)
; : d 21+Hy_ d(m v
Circular 2nr|Px£- - ryP) - fru ——| =
Debond [ % ai( ] & (15¢)

where f and H are determined by Equations 12, 13b, 14a and 14b. Notice
that. the momentum equation for the circular debond Equation 15¢ reduces to
the same equation as that for the debond Equation 15b if one evaluates the
limit as, T + =,
One other equation determines the motion of the flow; this is the
continuity equation
m = puA (16)

For any given geometry there are two equations of motion and three
equations of energy and state. These equations are expressed in terms of
seven variables h, T, y, u, P, p and m, Since there are five equations
and seven variables, it is possible to express aiy one parameter as a function

of any other two.
In general, experimental data are available to describe the burning rate




of the material, Since all mass flow in the flaw is due to the burning
rate which, in general is dependent on the pressure, and since the original
geometry of the flaw is a known function of x, it is possible to express

P as a function of m and y. The simultaneous solution of the governing
equations is initiated by using the perfect gas relation Equation 1] thé¢
property relation Equation 3 and the continuity relation Equation 16 to
eliminate p, u, and h from the momentum and energy equation yielding

1= (o4 bdim =0 - Bsiloss b oo Sheling
5Py (5" +§)) - x& ;‘,?T“R(Sn+"5b) -a;(l;'r.nk) (17a)

(v - DTR? + (PP (TR) - 21 PPy n&R = 0 (17b)

(the prime denotes differentiation with respect to x)
where
P=P/ and n= m/PA
P isa referenced pressure and may be picked at any desired value.
Equation (17b) is now solved for TnZR by the quadratic formula to obtain

Tan " -pzy ¢ F}(Pz + Gzﬂz);2
y -1 (18)

where G = 2(y - 1)T°R/y is a constant parameter of the propellant. Pricecls)

has shown that of the two alternate signs only the plus sign has physical
meaning since the minus sign corresponds to removal of mass in an unmixing
process which leads to a decrease in entropy. He further defined the radical
as a new variable

e G

Equation 18 is now combined with Equation 17a and rearranged to obtain

g 2 Y& { I\ ; l)F [Al & 5_(8]1' + Sbl)]

Az - YB)

(19)
- 2,
‘(¢ ) [§ (5, +HS,") + A‘] il $
-10-
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To proceed further a mass addition mechanism must be postulated.
If errosive burning is neglected the combustion rate, Ty» of a solid
propellant uay bz assumed to follow the empirical relation

n = oo (20)

where 1, .3 the recession rate of the buming wall and C and n are
constants to be detemmined empirically for a particular fuel. The
local differential mass fiux ic thsh 4h = Drbdsb, where D is the density
of the solid. The local mass flux may now be intograted to obtain

b
. =./(; DrydS, + 1)

Tte mo "indicates the presence of burning on the head end. The value of mo
is

A = DCPOR, (22)

Combining Equations 21 and 22 with the definition of n, one obtains

n =—Xﬂ(fz P“dsb + AU) (23a)

i n-1
o = DCP0 (23b)
Determination of the pressure distribution, or equivalently P, as a
function of x amounts to a simultaneous solution of the differential
equation for P (Equation 19) and the integral equation for n, Equation 23a.

For the three geometries of interest the equations to be solved are

" ] confner] - o

Crack
n

0

(25)

3
L]

-11-



Debond (26)

(4
P - ¢ -P EQ@ &) o0 ¥
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ng [ %
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In order to solve the governing equations, Equations 25, 26, or 27, it
is necessary to establish the boundary condition. If the flow is subsonic
at the exit plane of the flaw, then the pressure must equal the main
chamber pressure, Pch‘ If the flow chokes at the exit plane, the
boundary condition is just Mach number equal to one. Although it is pos-
sible for flow in a diverging duct with mass addtion to reach supersonic
velocities, it is not a nommal situation. To ascertain whether the
exit Mach number can become greater than one it is necessary to
evaluate the derivative of the Mach number as it approaches one.

Since the Mach number is of such prime importance, it should be
introduced into the problem formulation. Because a perfect gas equation
of state has been assumed as well as constant specific heats, the standard
relationships developed in Referance 14 are applicable for Mach numbers.

Thie term ﬁ/PrA which was given the symbol n can be written in terms
or temperature and velocity

n = T (28)

-12-




The temperature may be eliminated in Equation 28 utilizing the adiabatic
expansion relationship

T 2
(o] -1 M

ana the velocity u may be eliminated using the definition of Mach number
and the perfect gas formulation for the speed of sound.

i s e

After rearranging the terms there is obtained

MZ Y (f[pz 2 Gznzlli ) :
Py - 1) (303

Utilizing the previously introduced notation
¢ = PPechlt

Equation 30 simplifies to

2 g!c-E!
M =
P'(Y-l) (31)

Ll e e
. v

In reality, only the plus sign in Equation 31 has significance as has
been pointed out by Price (13). ,

The solution of the simultaneous governing equations (Equations 25,
26, or 27) may now be determined with the restrictions placed on the
boundary exit plane of either

(a) Subsonic flow Pe = Pch
(b) Choked flow Me = 1.0
) or o
(c) Supersonic when lim g{)—(— is positive.

M=+ 1
The condition (c) may be evaluated utilizing a general relationship
developed by Shapiro.(u) Application of Shapiro's general formulaticn

-13-
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for the present problems yields

M=1
1i CMZ 1i G
im = X
“dx M1 . 1My & 1 i—ﬁ%— (32)
where ol -y
6 = Masiyplwt 1 (33)

[? &+ ol (5; + mgy + 200 o ]
From Equation 33 it is clear that whether the local Mach number
increases or decreases depends on whether the local Mach number is
greater or less than unity and also whether the G(x) is positive or
negative. Since in the case under consideration the Mach number increases
from practically zero at the crack tip, the sign of G determines whether
locai Mach number increases. The value of G is primarily dependent on
the area and mass addition functions and, therefore, the sign of G is
determined by the crack geometry and fuel-burning properties. For typical
fuels and geametries, G is always positive. The Mach number, therefore,
increases toward unity and unless G happens tc decrease to zero precisely
as M = 1 (which in general is not true), the flow will choke at this
point. When choking occurs, there is a transient period of readjustment
in which the tip pressure, Pb, is increased by an amount such that

Mach 1 occurs at the exit plane, the pressure there is greater than the
external pressure and expansion waves form at the flaw exit and extend

~into the rocket chamber.

The complicated nature of the governing equations together with the
pressure dependence of the empirical burning laws for solid propellants,
in general, allow for only numerical solutions of the stated problem.
Appendix A describes the numerical procedures which were used to
generate solutions to the problem of mass addition with friction in
variable area ducts.

-14-
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APPROXIMATE ANALYTICAL. SOLUTION WITHOUT FRICTION FOR SPECIAL MASS FLUX
DISTRIBUTIONS

~ An analytical soclutinn may be obtained for the pressure distribution
1. a crack or debond if one neglects the effects of wall shear and the

mass flux, n, varies as x4 where k and q are constants depending upon
the geometry and fuel characteristics.

Equation 19 with the friction factor, f, equal to zero reduces to

2
=x Y' . Gnn'
Pty ((c = F & —“gﬂ-) (34)
for cases where the geometry is such that { = 0.

The form of Equation 34 is such that the relationship between Gn,
P and ¢ corresponds to the sides of the triangle shown in Figure 3.

Figure 3. Relationship of Gn, P and ¢.

As can be seen from Figure 3, z, ¥ and P' can be expressed in terms
Gn and an angle ¢'.

_ Gn
L= EES-E ’ (35)
F = Gn tan (36)
Gn
' = éz? ¢! + tané G' 37

Substituting Equations 35, 36 and 37 into Equation 34 and simplifying,
there is obtained

-15-



; $ - sing) L - si l‘l) (38)
¢ 'T—.-c':s—s'ﬁ;'(vr(l SIM)};-*(Y sin ¢) ©

If y'/y ~ n'/n, from which it follows y'/y m'/m, and if y and m are
known functions of x, the possibility exists for separation of variables.
A particular form for which this is true ;g

& xK (39
y~xd : (40)

In reality, m is given by the integral equation, Equation 21. How-
ever, under particular situations m can be approximately fitted by a power
function such as Equation 39,

Substituting Equations 39 and 40 into Equation 38 yields
e COS¢ .

Ry gy (1K - G- D+ wysim] (1)

Upon separation of variables there is obtained

dx _ (1 -y sing) d¢
x  "B(k, q, ¢) cos¢ (42)

where

Bk, 4, $) = vk - (q(v - 1) + k) sin¢ e

Equation 42 falls into one of thre- distinct types, depending on the re-
lationship of k to q. The three types are as follows:

1. k = q, therefore, B(k, q, ¢) = YK(1 - sing)

k=q H therefore, B(k, q, ¢) = (1 + sins)

[ 3%
.

8l k#mandk#-qr(-g—;—%%-

If the relation between k and q is of Type 1 or 2, then upon integration
of Equation 42 one obtains

1 o
(n )z*q s 1Ty (44)
% - tan{g + P [* 7 (T sing)

-16-




where +sin¢ corresponds to k = -q{-z—;%and- sin¢ to k = q. If the
relation between k and q is of Type 3, then Equation 43 integrates to

1
: & Dk )\ v _/G-DT G0 (45)
s Ktan (5+4) (egn )

In order to determine what values of ¢ are relevant in Equation 44 and 45,
one must consider the Mach mmber. Applying the transforms of Equations
35, 36 and 37 to the Mach number relation, Equation 31, the following is
obtained.

M2 o —dalee siné
sing (y - 1) (46)

From Equation 46 it can be seen that values of ¢ less than sin”! 1/y
correspond to M > 1,0 and values of ¢ greater than sin'1 l/ytoM < 1,0,
Since the governing equation was derived assuming M < 1.0, it is apparent
that ¢ must be greater than or equal to sin~! 1/ %

Considering Figure 3, it can be seen that since both Gn and ¥ are
positive quantities, ¢ must be less than or equal to n/2, Now again
considering Equation 45, notice th}at' the term on the far right may take
on imaginary values if B(k, q, ¢) becomes negative. The possibility of
B(k, q, ¢) taking on negative values depends upon the relationship of
k to q and upon the values which ¢ is allowed to assume. Setting ¢ = n/2
and B(k, q, ¢} = 0 and solving for k in temms of q, one obtains k = q.

Therefore, if k is greater than q, the term B(k, q, ¢) does not become
negative and the upper limit on ¢ is /2. If k is less than q, the

tem B(k, q, ¢) may become negative and in this case the upper limit on

¢ is that value of ¢ at which B(k, q, ¢) = 0. As was pointed out before,
the smallest value which ¢ may assume is sin"1 1/ y at which point M = 1.0;
therefore, setting ¢ = sin'll/yand B (k, q, ¢} = 0 and solving for k,
one obtains k = q/(y + 1). This last result indicates that k must be
greater than or equal to q/(y + 1) fcr the equation to yield a realistic
flow, It is apparent that the +sin¢ choice in Equation 44 has ro physical
meaning since it corresponds to a flow which is choked at ¢ = 9. All of
the above results are summarized in Figure 4.

-17-
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Figure 4. Dependency of relevant ¢ range on the relationship of k to q.

For the relevant range of 4 enumerated in Figure 4, one may consider
the relationship between ¢ and x. Notice in Equation 45 that if k > q,
then [k(v+ 1) + q(vy- 1)](q - k) < 0 and, therefore, as ¢ + n/2, x » 0.
Vhenk <q, x=0at ¢ = sin’l */(k + q(y- 1)). If k = q, Fquation 44
describes the relationship of x to ¢. Letting ¢ + n/2 in Equation 44,
note that tan(n/4 + ¢/2) + 2/(1 + cos¢ - c£iip). Setting 1 - sin¢ = w and
letting w +~ /) is equivalent to letting ¢ -+ n/2; therefore, making the above
substitution in Equation 44, one has as ¢ > n/2

1+y 1-v

1 2vq - Zyqw
x -+ const. (W) e
But the above limit is of the form
g) =t
X + o W Yq
const 3
where
-1 -
g T+ vy

Expanding eg/ ¥ into a series and noting that g < 0, cne obtains as ¢ + n/2,
x » 0 in Equation 44,

S1RE
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From the definition of n and the assumed fomm of y and m it is
apparent that

nnst-4 47)

Taking both sides of Egquation 45 to the k - q power, one can detepmine
that if I # q

1

K+ ) +q6 - 1)
1 s -k(y+1)[ ™t
T B ¢ 1
oo 3+ ) "YRgm) T

(43)

If k = q, however, n is a constant,

The parameter of greatest concern is P and the region of greatest
concern is the tip region. When k > q, it has beer shown that x - 0
corresponds to ¢ + n/2. Equation 48 gives n as a function of ¢ and
Equation 36 gives P as a function of n and ¢. Therefore, substituting

Equation 48 into Fquaticn 36 gives P as a function of ¢ alone
1
kv + 1) +qh - D

0 3 W 4 BQ u Q'k(Y"'l)
P”tan"(tan(l'+%)q( cose )

Observing Equation 49 as ¢ ~ 1/2, one may note the following
Bk, a4, ¢) + (v- 1)k - q)

therefore, as ¢ + /2

. \ 1
. -vq
. sing ’ 1 1
P + Constant ( ) (co

) q-k(y+1) ‘k(Y"l)*'Q(Y':D
cos¢ (\1 + cos¢ - sin¢ Sé

Simplifying and rearranging, one has

¥
. K+ +aly - D
P > Constantq 1 * cos¢ - sin¢
cosé
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Applying L'Hospital's rule, the above relation yields P > constant. There-
fore, if k > q as x -+ 0, the pressure approaches a constant.

Ifk=q, x>0 corresponds, again, to ¢ - n/2; however, since n is
constant, P » « a5 x - 0,

If k < q, then k - q < 0and n»=as x> 0 since n~ x5 ~ 9. But
x ~ 0 corresponds to ¢ - sin -l(i()/('k +a(y - 1)); therefore, P + =,

From Equation 34 one can see that the distribution of P with x as
X > 0 is determined to a great extent by the behavior of nn' as x - 0.
Since n v x5 9, then nn' » x2(k - @) - 1 and, therefore,

itk - g ~.1/2, then nn' > 0 as x + 03
ifk-q

]
1

1/2, then nn' = constant;
if k - q < 1/2, then nn' > = as x - 0.

Consider, first, k-q > 1/2 and examine the limit of P' as x - 0. Noting
that ¢ » P one has

P - 1@ - P y'y)
applying L'Hospital's rule

LI 1_% (g' - P') but z' = PP'/z + (G2nn")/¢

and, therefore, as x - 0,
By = 5' + (Gznn')/.p and P' > v/(1 -y ) Gan' > 0

Next consider the limit of P' as x > 0 for k - q = i/2. One still has
t > Pas x+ 0 and, therefore,

2

.
R, | l_(C' -P) + 8 ,;_“']—> Constant
-y

1

Finally consider the 1limit of P' for k - q < 1/2. As before ¢ > P as
X > 0; however, nn' + o, therefore,




as x + 0.

Equation 34 also indicates that no matter what the relation of k to
( that P* » = as ¢ + P, or in other words, the slope of the curve for
P as a function of x is infinite as the flaw exit for all choked flows.
Figure 5 summarizes all of the above results.

. \ n/2 JM\ P s P'=0
>q+
sin! 1/y | \ -
I & ¢ -
/2 P +_P'=Constant
k=q+k \
Sin_l I/Y . $'=on
1 > X =X
f q<k<q¥y L
sin-! 1/y
III
%
k = q 1T/2 A ¢ ‘p‘ \1 o
o sl 1y \ \V'“
- X +>X
= k
kea Fin phey 4\ i \
v sin"! 1/y \ "o
> X -+ X

Figure 5. ¢ versus x and P versus x for various k and q relations
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EFFECT OF FRICTION ON PRESSURES PREDICTION IN CRACKS AND DEBONDS

Analysis of pressure distributions in burning flaws have been investi-
gated previoﬁsly at ERDE ®) assuming that the combustion gases were in-
compressible., They detemmined the pressure distribution assuming the
standard pressure drop in a duct due to friction. Although the gases
are both viscous and compressible, a degree of satisfaction was obtain-
ed when the analysis was compared with limited experimental data from
tests in which the cracks were not choked. This gives rise to a require-
ment to evaluate the effects of both compressibility and friction to see
whether either can generally be neglected.

Figures 6 and 7 show the predicted pressure distributions from the
analvsis of the first portion of this chapter in both a crack and debond
of similar geometry for a relatively high burning rate propellant. (The
burning rate is higher than for TP H-1011.) The geometry was purposely
chosen so that in neither case would the flow be choked to the extent
that the exit plane pressure was higher than the chamber pressure. As
can be seen, for both the crack and the debond, a considerable error
would be introduced by neglecting the friction; however, the major reason
for the large over pressures in each flaw was due to compressibility ef-
fects.

For the case of the debond with its lower over pressures and lower
mass flow the effect of friction did not greatly offect the Mach number.
For the crack with its higher mass flow and choked condition, the effects
of friction cause a greater rate of change in the Mach number near the
exit of the crack.

The results illustrated definitely support the inclusion of both
friction and compressibility in evaluating the fluid mechanics of burning

in flaws in propellant grains.
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EVALUATION OF TWO-DIMENSIONAL MODELS OF FLOW IN A FISSURE WITH OOMBUSTION

Presented in preceding sections was a one-dimensiona) model for the
flow and pressure distribution in a burning fissure. It i: rtant to
determine in what limits this one-dimensional representation yields a re-
liable representation of the actual flow, The following analyses are in-
tended to answer such questions., First, the limiting geometry is determined
in which compressibility effects became ‘mportant. Since flow from the
transpiring burning surface is rotationa., it is also appropriate as a
second problem to determmine the effects of vorticity on flow in the burning
crack.

Effects of Compressibility

The following is a two-dimensional perturbation solution of the com-
pressible flow ficld in a sharp crack with arbitrary mass addition at the
wall, A basic assumption is that the Mach number of the flow at the trans-
piring wall is small; the wall Mach number thus serves as a convenient

perturbation parameter. Another assumption is that the flow is irrotation-
al and this severely affects the type of boundary conditions which can be
satisfied in the solution. In a later section the effects of rotationality
are assessed. In particular, the condition of normal effluxe at the wall
must be relaxed to secure an irrotational solution. It is readily demon-
strated that an irrotational flow in geometrical situations of the present
type is only possible with normal mass injection for a special distribution
of wall sources. If, for example, the burning is uniform, then the flow
cannot be irrotational unless a velocity component parallel to the trans-
piring wall is allowed.

Figure 8 illustrates the assumed geometry., Angle % is the half angle
of the triangular sharp crack. Assuming irrotational flow, the problem may
comeniently be represented by a velocity potential ¢ such that

(50)

where u is the flow velocity vector. The governing equation for steady
flow is, therefore,
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72 = v4ey (1"5-"@) 5 (Y—z—l) V24 (v¢-v9) (51)

where all quantities are nondimensionalized by a characteristic length
representative of the length of the crack and the stagnation speed of
sound of the combustion gases a . The boundary condition is that the
nommal components of flow at the wall is

v=+vi(r) ones=7? R (52)

where v is a Mach number representative of the flow at the wall and f(r)
is the distribution of sources along the wall.

In the plare polar coordinates » the full problem for compressible
irrotational flow is

BURNING SURFACE

Figure 8. Two-dimensional representation of a sharp crack

-26-




2
b0
2 +669+

¢r ¢rr rz
1 1 b8 0%
¢rr+?¢r+;'2'¢ae' +r3+2r2 ¢re *

R 6. ¢

& 3 6 T 66

(I_z_)(¢r . 7)(4‘ + Iy T)
T T

-

¢g = + vIrf(x)] on e = te (53)

The form of the boundary condition suggests a perturbation approach with
v as the small parameter. Put

o= u® o 2D (54)

and collect various orders of v:
0(v):

B 14, 1,0
¢rr +;- T +r7¢ee 80
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and so on. Note that the correction for compressibility enters at the
third-order term. The second-order solution is trivial. Thus, as long
as v is sufficiently small, the solution will correspond closely to the

incompressible case.
Solution of the incompressible problem (Equation 55) is simple.

The eigenfunctions corresponding to the Laplace equation in plane polar
coordinates are

¢£1) = (Ak sin o + BK cos Ke) (CKI‘K + DKT-K) (58)

where « is an integer.
Solution to the present problem may be constructed as an infinite
series of these eigenfunctions:

@

o) < (A sin«e + B cos x6) (C 1" + D.J'-K)‘ (59)

k=1

r .
[

The coefficients may be determined by matching the boundary conditions
(Equation 55). Note by symmetry, AKE 0, thus

¢g1) =irf(r) =+ Y « sin ko, (C r* + D" )
e k=1 ] (60)

coefficients C 2 DK are readily determined if f(r) can be expanded in a
Taylor series. The simplest case is for uniform transpiration, f{(r) = 1.
Then all terms in the series must vanish except for «= 1 and D o 0.
Thus

T = (sin Oo) Clr
and

1
Cy = —v—er
1 sin Oo

The velocity potential for this case is

01
Ney =(cos 6 )r s
sin 6
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apd £f(r) = 1 which shows that the magritude of the velocity is constant,

|uf = ;-m—"e: +0(v) (62)
and depends only on the wall Mach mumber and the crack half-angle 0
There is a restriction on 9y Note if B 6(v), then the perturbation
scheme breaks down and compressibility effects are likely to be important,
For typical propellants,

10‘3 <v < 10_2

so that the present solution is valid for cracks with 8y > 5°. For
narrower cracks, compressibility effects must be represented obviously
since the Mach number within the crack approaches imity, The solution
implies that the flow may be choked for a sufficiently narrow crack,
as already indicated in the one-dimensional solution.

Effects of Vorticity
It is appropriate to question the validity of the one-dimensional

analysis in representing the rotational flow generated by burning of the
walls of a long crack. As shown in the preceding analysis attempts to
construct a two-dimensional solution with the assumption of irrotational
flow do not properly satisfy the boundary conditions. Such solutions
exhibit a component of velocity parallel to the surface of the burning
propellant., The burning process requires that the velccity be normal to
the surface. Thus vorticity is generated in the burning process and is
transported along the streamlines; the flow is rotational.

Assuning a sufficiently wide crack, the flow may be assumed incom-
pressible as shown in the preceding analysis. Since the flow is rotation-
al, it is convenient to work with the stream function y such that
9

- 9
e, V=-2t (63)

Vv = Y
3T %o

— .- % - - _
u—w,v 3X u

=
Q

for cartesian and polar coordinates respectively.
The governing equation is

vy = -w(¥) (64)

lere w is the vorticity. The vorticity vector is of course perpendicular
to the flow since planar flow is assumed.
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Solutions are readily determined for the rectangular geometry shown
in Figure 9. The boundary value problem becomes

2 2
(i uw) (65)
x yl.
{ _E)_;p’ =+ vf(y: onx=+a (66)
|
a—i =00y onx=+a (67)

where the flow is forced to be nomal to the burning surface as required
by the combustion process. Soluticns may be determined for arbitrary
burning rate as reflected by the function f(y). v is representative of
the Mach mmber of combustion products near the origin at the crack tip.
Solutions of the type required here may be found by assuming w to be
proportional to y. Put

w=c2y _ (68)

where c = constant.

Tnis assumption is valid if dissipation within the flow field is
negiected. For uniform burning, f(y) = 1, the appropriate solution is
simply

v = ~vy sin(z) (69)

which assumes no burning at the crack tip. Streamlines for this solution
are shown in Figure 9.

-30-




L
.
«

XY AR
d , \\\
b N
f k, \
N\ / / 5\
, . I \
| \ i \  BURNING
\ \ SURFACE
N\
AN
\
N\
\
\
\
\i,

Figure 9. Rotational flow in rectangular crack with combustion
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iII. PARAMETRIC STUDY OF THE FRESSURE DISTRIBUTIONS
FOR BURNING CRACKS AND DEBONDS

Presented herein is a parametric study of the influence of geomet-
ric and propellant characteristics on the pressure distribution in cracks
and debonds. The study is carried out primarily for TPH-1011 propellant;
however, the effects of higher burning rates are indicated.

EFFECT OF FLAW LENGTH AND EXIT AREA ON CRACK TIP PRESSURE

Although the entire distribution of pressure along the length of a
flaw is necessary to calculate the surface energy of the flaw, the pres-
sure most characteristic of the loading is the tip pressure. This is
the pressure at the location of propagation and the location of the maxi-
mum burning rate as well. Therefore, to illustrate the effects of flaw
geametry on the pressures within a burning flaw, the flaw tip pressure
is presented as a function of flaw length. Assuming a triangular or
uniformly diverging flaw for illustrative purposes, the exit crack width
serves to illustrate the effects of exit area.

Figures 10 and 11 indicate the effects of flaw length and exit width
for a crack and a debond respectively. The propellant properties used
are those of TPH-1011. It is assumed that the main chamber pressure is
1000 psia and that the crack tip width is 0.01 inches.

For both cases it is seen that the flaw tip pressure increases
rapidly with increasing length and, further, that the pressure increases
with decreasing angle of divergence (decreasing flaw width).

EFFECT (i ASSUMED FLAW TIP DIMENSIONS

Mamerical solutions of the governing cne-dimensional equations pre-
sented in Section II-A for cracks and debonds cannot be obtained if the
crack is assumed sharp. In addition, there is no such thing as a truly
sharp crack. However, it would appear reasonable to evaluate the ef-
fect of the assumed tip gecmetry mumerically as it approaches zero to
ascertain the form of the singularity at zero tip area.
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Figure 10 Crack tip pressure versus length for Beveral Crack Beametries
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Figure 11. Debond tip pressure versus length for several debond geometries
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Figures 12 and 13 present typical results for both a triangular
crack and a triangular debond of otherwise constant geametry. The
geometry chosen was a length of two inches and an oxit width of 0.05 inches.
The propellant was assumed to be TPH-1011 and the chamber pressure 1,000 psia.
For both types of flaws there were small changes in tip pressure for a
decrease in tip width fram 0.01 inches to 0.001 inches. Further decreases
in tip wadth down to 10°* inches caused changes of only 400 psi for the
case of the crack (Figure 13} and 200 psi for the debond (Figure 12}.
EFFECT OF BURNING RATE LAW

Figures 14 and 15 indicate the effects of propellant burning rate
coefficients, GDC, on the flaw tip pressure over a range of flaw lengths.
The analysis assumed constant tip and exit plane widths and a constant
chanber pressure. C = 0.0047 is equivalent to TPH-1011. As can be seen,
the propellant burning rate has a strong effect on the resulting pressures.
While the lower burning rate propellant, C = 0.00027 shows negligiblé
increase in pressure, TPH-1011 and faster burning propellants rapidly
reach high over pressures. Thus, all conclusions reached here for TPH-1011
flaw tip pressure would be conservative estimates of what would occur in
faster burning propellants sach as the double base propellants utilized in
some operational systems. :

Figures 16 and 17 present plots of exit plane Mach mmbers for the
propellants of Figures 14 and 15. The higher burning rate propellant
reaches choked conditions for flaw lengths considerably less than those
considered.

TYPICAL INCREASE IN FLAW LENGTH WITH TIME, ASSUIMING NO MECHANICAL PROPAGATION

The computer program described in Appendix B will account for all
changes in flaw geometry as a function of time, assuming that the flaw
does not propagate mechanically. Typical results for cracks and debonds
are presented in Figures 18 and 19 respectively. As can be seen, for the
constant initial width flaws assuming TPH-1011 propellant with a chamber
pressure of 1,000 psia, the rate of increase in length with time varies
directly with initial crack length. This is as would be expected since
it correlates directly with the pressure loadings. The crack growth
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Figure 14. Crack tip pressure versus crack length for several propellants

at constant tip and exit width
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Figure 16. Exit Mach number versus crack length for several propellants
at constant tip and exit width

-302




1-0 pow L _:_
GDC = 40.0
0.8 L
Pch = 1000 psi
b Debond Tip Width = .01 in.
'E Debond Exit Width = .03 1in.
s 0.6 F
o=
[4]
- L
=
g 0.4 |
6.2 F
2.3
]

Wi
o
=

1
y) 5 3

DEBOND LENGTH ~ INCHES
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at constant tip and exit width.
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due to burning alone can safely be said to be sufficiently slow so that

it offers no great problem.

A characteristic of all burning flaws is that the pressure decreases
rapidly with time due to the geometrical changes occurring. To illustrate
this effect, Figures 20 and 21 indicate the time required to reduce the
flaw tip pressure by a factor of two as a function of the coefficient,

C, in the burning rate law. The burning rate law is that for TPH-1011 with
coefficient changed. As would be expected, the half life drops off at

a faster rate for the crack than the debond due to the fact that it is
burnirig on both surfaces. Although extremely high pressures may exist
initially in a flaw, the defect geometry changes at a near constant rate
due to the small exponent in the burning rate law as can be seen in

Figures 18 and 19.

EFFECT OF VARIABLE GEOMETRY, CIRCULAR DEBONDS

Figures 22 and 23 represent the types of situations which might
result in a head-end debond around a rocket motor igniter. As can be

seen, the smaller the igniter dicmeter, the greater the difficulty for
equally deep debonds.
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IV. TIME HISTORY OF FRACTURE CR DEBONDING IN
VISCOELASTIC MATERIALS

Stated in perhaps its simplest form,the problem to be solved from
the solid mechanics point of view is the following: given the geametric
configuration of the crack or debond in the rocket grain and the pressure
distribution incide this crack or debond, both as known functions of
time, determine the instant at which fracture is initiated and, at least
for small times, the time-history of the fracture. Stated in such a
manner, the problem may appear to be a relatively simple one. Such,
unfortunately, is not the case due primarily to the difficulties en-
countered in mathematically analyzing a budy with a general cracked
geametry. When the geametry changes with time as in this problem
once fracture has been initiated, or the loads are applied to the grain
dynamically, ine.cia effects may became of sufficient importance so that
they can no longer be neglected. Thus, a new dimension of difficulty is
added to the problem. Finally, it should be noted that the materials
one must work with when investigating crack propagation in solid »ro-
pellant rocket motors must be characterized, at best, as being linearly
viscoelastic. Unlike elastic materials in which the stress is a
function of strain alone, the rate dependency of viscoelastic materials
means that the stress depends upon the entire time-history of the strain.
This, of course, camplicates the analysis still further.

Fortunately, however, th=2 contimnm theory of fracture has received
a great deal of attention in this century since its beginnings in the
classical work of Griffith (15) . and much progress has been made due
in large part to the improvement of mathematical techniques and the
advent of the high speed camriter. This progress has been largely con-
centrated in the areas of fracture of brittle elastic materials and
more recently, of fracture of ductile elastic materials where the effects
of plastic deformation in a region surrounding the crack tip are con-
sidered. However. with regard to the present study, it should be
mentioned that a great deal of work has been done recently on developing
methods of analysis for viscoelastic structures of uncracked geometries.

4
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In addition, mary of the concepts of fracture mechanics developeu for
use with elastic materials are 3till valid for use with viscoelastic
materials. -

Because of the noted lack of information available specifically on visco-
elastic fracture, an approach to the solid mechanics part of this program has
been chosen which is based upon the development and analysis of relatively
simple models capablz of describing the important aspects of viscoelastic
fracture and debonding at least insofar as the viscoelastic dependence
is concerned. The information obtained in analyzing these models could
then be used to provide qualitative results in the prediction of fracture.
With these comments in mind, let us consider the progress that has been
made, first, in the field of cohesive fracture and then in the c¢losely
related (from a continuum mechanics point of view) field of adhesive
debonding.

The first work to be mentioned is the investigation by Swanson(16)
of fracture in a linearly viscoelastic tubular rocket propellant grain.
In this study, the cylindrical grain was assumed to be of infinite
length and to have a radial crack at its centerbore running the full
length of the cylinder. Time-dependent critical stress intensity
factors ch(t) were then used as criticality conditions for the cylinder
subjected to a time-dependent internal pressure loading.

The critical stress intensity factors KlC(t) to be used were
obtained from laboratory tests on specimens of Hercules Incorporated
designated EJC solid propellant. These specimens were in the form of
solid right circular cylinders one inch in diameter by three inches
long with a crack three-sixteenths of an inch deep machined cirium-
ferentially around the specimen by knite blade on a lathe. Bonding
these specimens to rigid end plates, they were then subjected to

several constant rate tensile tests at various cross-head speeds. In

addition, a series of tests was also conducted in which the crosshead speed
was changed from one constant value to another during the course of the
test. In each of these tests the time to failure and the failure load
were recorded. From the load at failure, it was a simple matter to
calculate the stress intensity factor at failure from the analysis

given hy Bueckner(") for an clastic cracked cylindrical specimen.

Bueckner's results can be summarized as

~50-




K, = 6ne,c(un)’i F(d/D) (70)

where 6net is the axial force divided by the net area of the notched
section, D is the outside diameter of the specimen, d is the diameter

of the notched section and F(d/D) is a numerical factor listed in
Reference 17. It is clear from Equation 70 and the elastic-visco-
elastic correspondence principle that this stress intensity factor applies
to the viscoelastic test specimens as well. Hence, plotting K1 at
failure, i.e. ch, versus the time to failure for the various tests
performed, a plot of ch(t) was obtained for the EJC propellant. This

is shown in Figure 24.

Now if a viscoelastic analysis of a particular cracked structure of
EJC propellant can be performed so that the time-dependent stress
intensity factor Ki(t) can be found, the time to fracture is given by
the intersection of the ch(t) and Kl(t) curves. The difficulty here
lies in the fact that since ch(t) was plotted for constant loading
rates, our predictions of time to fracture are necessarily restricted

to structures undergoing at least an approximately constant loading
rate. Fortunately, however, use of the spherical flaw model (to be
discussed later in this section) and laboratory tests have shown the
time-dependent critical stress intensity factor cpproech to be relatively
insensitive to a wide range of fast-slow variable loading conditions.
Using a finite-element stress analysis method, a plane-strain
elastic analysis was made for a radial crack at the centerbore of a
tabular rocket propellant grain. The analysis was made to calculate
the strain energy in the propellant for a crack depth one-half panel
greater and one-half panel less than the actual crack depth under
consideration. Having calculated each of these strain energies, the
strain energy release rate with respect to crack surface area G1 1s
then calculated from a finite difference approximation to the formula
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where U is the strain energy and A is the crack surface area., Having
calculated this expression, O can finally obtain the stress intensity
factor KI as

i

k2 » L

1 e (72)

where E is Young's modulus and v is Poisson's ratio.

Once having obtained the stress intensity factor for the elastic
problem, it is possible to solve for the time-dependent stress intensity
factor K (t) for the corresponding viscoelastic .problem chrough the
use of Schapery s quasi-elastic approximation (18). In fact, this results

E t
2w - 6&2) (ie—lg) ; 73)
E

where Erel(t) is the stress relaxation modulus, if the internal pressure

in

is applied as a step function in time. When the pressure does not

vary with time in this manner but in some more general way, the fact
that we are considering a linear viscoelastic material and that Kl is a
linear function of the applied pressure loading, allows one to use
Equation 73 with the Duhamel integral to obtain K (t) for this more
general time-varying pressure loading. Plotting the resulting K (t)

for a particular time-varying internal pressure on the same graph with
the ch(t) curve cbtained fram the laboratory tests on cracked specimens,
the time to failure is predicted as the point of intersection of the

two curves.

To verify the analytical work, a high-rate hydrotest was conducted
on a structural test vehicle (STV) containing a radial crack. Crack
propagation was produced during the test and the time of its initiation
was obtained from instrumentation recordings of grain deflections and the
pressure rate. The measured pressure-time eurve was then used in the
previously mentioned finite-element analysis of a viscoelastic grain
to obtain the time-dependent stress-intensity factor for the STV. This
calculated Kl(t) curve was plotted in Figure 25 along with the

25




experimentally obtained ch(t) curve. The irreg''arity in the K, (1)
curve was believed to be caused by entrapped air in the hydraulic
system. The intersection of the two curves in Figure 25 is the predicted

time to failure and is seen to be within five per cent of the observed
time tc failure.

Although in the one test conducted the stress intensity factor
approach outlined above was quite successful in predicting the time to
failure, two limitations of this method do arise. The first is that a
uniform pressure distribution was assumed to act within the crack whereas
the analysis of Section III shows that the actual pressure distribution
in a burning crack is non-uniform. The effects of such a non-uniform
pressure distribution on crack instability can be estimated, however,
by the results of Appendix C, thus causing no substantial difficulties.
A more sericus objection is that the critical stress intensity factor
approach 1is not applicable to the second part of our problem; that is,
the prediction of initial velocities of propagation. Hence, we have
considered a more.gereral approach to the problem based on the thermo-
dynamic power balance. This balance can be written as

I = F +.20 +SE + K (74)

where i is the power input of the applied loading at the boundaries of
the system, ; is the:rate of increase of the free (strain) energy,

2D is the dissipation, Sﬁ is the rate of increase of the surface energy
and k is the rate of increase of the kinetic energy. In principle,
this power balance can be applied directly to any crack configuration,

loading and material of interest. In practice, hcwever, computational

T

1 difficulties are encountered ir: the application of the power balancc
' to realistic geometries and materials. This has led us to consider

(\ - . - . I3
William's model as of a spherical flaw which incorporates a simplified

crack geometry and the power talance Equation 74 tc predict both the
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time to fracture and its initial velocity of yropagaticn. Aside from
the relative ease with which one can calculzte the various terms of the
power balance (Equation 74) for this geometry, further motivation for
studying the spherical flaw was provided by the fact that the criticality
condition for the elastic case is extremely similar to that found for
the more realistic crack geometries of Criffith(ls) or Sneddongzo).
Since this model has been extensively inVestigated in the liferature,
it is sufficient here only to outline its important features as regards
this study.

In his original work cu the sphericalbflaw;'Willianm(lg) neglected
inertia effects and considered the surface of the flaw to be stress
free while subjecting the outer boundary of the hollow sphere to four
typical inputs, namely, constant stress or displacement and constant
stress or displacement rate. For each of these four loadings he was
able to arrive at an expression from which to calculate the time to
fracture. However, for this simple mod:1 difficulties were encountered
in solving the nonlinear integral equa£ion for the time history of the
flaw growth. For example, an initial velocity of propagation was found
for the ca:. where the outer sphere boundary was subjected to a constant
displacement rate, but in the limiting case of instantaneous propagation,
that is, time to fracture te = 0, this initia. velocity was discovered
to be infinite. This rather unrealistic result was attributed to the
fact that inertia effects were neglected in the analysis. Although this
omission may cause little error .in a highly viscous material subjected
to slow loading rates, this will not be the case in more elastic materials
or when the applied loading rates become appreciable. This was, in fact,
borie out by a subsequent analys;s(21) of the spherical flaw in which the
kinetic energy contribution to the power balance was included. Here it
was shown that, for the case of a constant displacement rate loading
at the sphere’s outer boundary, the power balance fracture criterion
predicted a zero initial velocity of propagation of the flaw when
fracture was initiated instantaneously. Thus, the effect of including
the kinetic energy in this particular example was to exhibit a smooth
transition during the acceleration from zero initial flaw velocity.
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Because of its wide applicability and its ability to predict the time-
history of fracture, the energy balance will be applied as the criterion
for fracture in our further studies. Thus, the sphericzl flaw has
served several useful purposes toward this end. Namely, it has provided
us with a better understanding of the subtleties of applying the power
balance; it has given us some gualitative insight into the behavicr of
crack propagation in linearly viscoelastic materials; it has also provided
(see Section V) several useful estimates regarding times to failure ahd
the magnitudes of initial crack propagation velocities in burning rocket
grains, All of these will be of benefit as more sophisticated
models are developed and soived in the process of obtaining the final
desired quantitative results.

Unlike the field of cohesive fracture, little work has beern done
in the field of adhesive fracture (debonding) from a continuum mechanics
approach, even for the case of bonded elastic materials. In fact, it
was only recently pointed out that since real adhesive interfaces, like
real materials, contain small cracks {debonds) which give rise to
stress concentrations, the Griffith approach to cohesive fracture
could then be extended to the study of adhesive debonding. Williams(ZZJ,
for example, showed that when using the power balance as a criterion
for crack propagation, the only difference mathematically between the
phenomena of cohesive fracture and adhesive debonding is in the
interpretation of the energy required to create new free (cohesive or
adhesive) surface area.

To this date, continuum mechanics studies of adhesive failure have

" centered almost entirely on studies of the mathematical singulavities

which occur at the tip of cracks along an interface of two dissimilar

(23-24) or on methods for the experimental detemination of the
(25-26)

media
energy required to create new free adhesive surface area, Y,
These two points are worthy of further discussion.

As for the case of cracks in a homogeneous solid, the stress
singularities at the tip of ‘a crack ulong the interface of two
dissimilar media can be found by the linear theory of elasticity.
However, in the general case of arbitrary material constants the
singularities are not solely of the square root type as they are for
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: cracks in homogeneous media, but are found to cstillate rapidly near the
crack tip. For example, the stresses are of the form(27)

r~ oy

1 T 7 T
y 7_; L1\0 cos (B ma—;-i,-) - B() sin(g AN r) + 0(1) (75a)

TRAT IR
&N

-

. I A g 4 r e r

4 6X)’ = 7_; /\0 sin{g Ena -y I') + BO cos (B ilnmﬂ + 0(1) (75b)

é for the case of a hond line subjected tc both tension and in-plane shear.

1 In Equation 75, 8 is defined by '

3 by +H,(3 - dv))

| B = -2% in 1+ 2(3 = l (76)
A, and B, are stress intensity factors, r is the distance from the

crack tip along the interface, a is the crack half length, u and v are
the shear modulus and Poisson's ratio, respectively, and the subscripts
one and two refer to the diffevent materials on either side of the debond.
Note that for the special case where the debond occurs at the interface
between a rigid material and an incompressible one, that is W, =« and

v, = 0.5, no oscillations occur. Because of the trig-log behavior of the
stresses in the genecral material case, one cannot rigorously compute

the strain energy directly. lowever, as a practical matter, the

oscillating singularity is disregarded (28).

The expefimental determination of the energy required to create
new free adhesive surface area, Yy has been the subject of much
discussion and several methods have been proposed. Perhaps the best

of these methods, however, from the combined viewpoint of experimental
convenience and ease of mathematical modeling, is Willians'(zg) modifica-
tion of a method originally proposed by Dannenberg (26). In this
""pressurized blister test ' a thin disk layer of soft material is cast
and cured upon a relatively rigid base plate except for a central
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circular portion which is prevented from bonding. Pressure is then
f introduced into this unbonded region causing the thin disk layer to
E lift. up off the base plate in a fashion similar to a blister. The
: radius of the unbonded region remains constant as the pressure is
slowly increased until a certain critical pressure level is reached,
At this time the radius enlarges, signifying an adhesive failure
(debonding) along the interface of the disk and base plate. Mocdeling
the system mathematically and applying the energy balance results
; in a relstionship between the materizl properties of the disk, the
| critical pressure and A This result, combined with the experimental
: data, -Zlows one to arrive at a value for Y,
: Since the experimentally determined values of Y, are critical to
: the successful use of the power balance in predicting adhesive debonding,
it is imperative that these values be as accurate as possible. This
accuracy, however, aside from laboratory techniques, is heavily dependent
upon how well the mathematical model of the blister test can be made
to conform to the actual experimental setup. Thus, some effort
has been expended in developing more sophisticated mathematical
models of the blister test to replace the original analysis. In this
first analysis (22) the thin, flexible disk layer was modeled by linear
elastic plate theory while the base plate was considered to be rigid.
Since then two more sophisticated models have been made. The first(zg)
used non-linear, large deflection plate theory to evaluate the effects
of large deflections of the disk layer while the secondiso) was
concerned with the case of two materials bonded together by a third
rather than one being cast directly upon the other. Let us investigate
each of these models further.
It can easily be shown using linear elastic plate theory and the
power balance equation (again neglecting inertia effects) that the
energy required to create ne+ free adhesive surface area in a blister

test is given by(zg)

Py = 21, (77)
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where P o is the pressure needed to initiate the debonding and Wy

is the center deflection of the blister at the time debonding starts,
Thus, values of Y, can be obtained from laboratory blister tests by
simply recording the pressure and central deflection of the disk at the
time the debond begins propagating. A plot of ., versus wb‘is shown
in Figure 26 for a test run on polyurethane cast and cured onto a
polished glass plate. It is noted in this plot that for small center
deflections the fracture initiation points fall quite closely along

a hyperbola of parametric value 2y, However, for larger deflections
this is no longer the case du> to the inability of linear plate theory
to account for the midplane stretching in the polyurethane specimen.
Performing a membrane analysis and again using the power balance, we find
that if the membrane stresses are such that they overshadow the bending
stresses, v, is given as

2.4y (78)

ol
Per'o a

Thus for larger cenfer deflections, the plot of fracture initiation
points in Figure 26 should fall on a hyperbola of parametric value 2.4Y,.
This is s=2en to be the case. In the transition between linear plate
theory and membrane theory, an approximate solution by Berger(sl) can

be used to include the effects of both plate bending and stretching.

In this case, the use of the power balance results in a complicited
expression from which to find ¥,. This expression must be solved
nuger;cally,

The effects on the experimentally determined values of Ya.due to
the thickness of two materials being bonded together by a third have
been investigated(sz) by approximating the interlayer as a Winkler-type
elastic foundation. Using for the analysis the standaid blister test
configuration with the addition of the interlayer, an application of
the power balaice results in an expression for y_ which can be written
in the form

2 4

T T T [ F0) 79)
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where P is the pressure at the instant of fracture initiation, a is
the radius of the debond before fracture, D is the flexural rigidity of
the plate and

}\4 3 1-vy El
1 1 i (80)
(1 - 2v7)(1 + v7) | 4Dh

1 and E1 are Poisson's ratio and Young's modulus,

In Equation 80, v
respectively, for the interlayer and hl is the thickness of the inter-
layer. It is clear that in the limiting case of a vanishing interlayer,
i.e. hl -+ 0, we have » + », Values of the function f(Aa) are given in
Table I. An inspection of these values (in particular iy = ») shows

that £(2.) is the correction to v, due to the inflL nce of the interlayer
thickness,

It should bz mentioned here that both Ve and Yoo that is, the energy
necessary to creat: new cohesive or adhesive fracture surface, respectively,
have usually been assumed to be time-independent. This assumption was
imposed primarily as a motter of analytic convenience although it has been
widely recognized that this is not the case (33'34),'The time dependence
of Yy and the slow growth of adhesive fracture observed in the blister
tests that have so far been made, suggest that time-dependent dissipative
mechanisms take place dur...g fracture, Thus, a further refinement in
the mathematical model of *' . blister test is still necessary in that
the thin, flexible disk layer must be modeled as being viscoelastic.

Work is proceeding in this direction.

Assuming the same materials and surface preparation as were used in
the experimental determination of 1,» ONE can use this now known value
of Y, to predict adhesive debonding in a specimen of different geometry
under different loading conditions if one can solve this problem for
the potential energy release rate with further debonding. For example,

a rather idealized problem of adhesive debonding in a case-bonded solid
propellant rocket motor has been investigated (29) as an illustration of
the approach to be used. The idealization considered is that of a
finite length, elastic solid propellant grain debonding in an axially
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symretric manner from cne end of its enclosing rigid case. The end
opposite the finite lengih debond is considered to be fixed and the grain
is assumed to be solid (100 per cent web fraction grain). The end of the
grain where the debond takes place is subjected to a mormal pressure which
also acts in the debonds and the dimensions and material properties are as
shown in Figure 27, If we further assume that the kinetic energy of the
system caa be regarded as being negligible, the power balance relation
can be written using Clapeyron's theorem (35) 46

X (81)

where U is the strain energy of the system and A is the surface area of
the debond. Thus, the problem becomes one of finding the variation of
the strain energy with respect to changes in the debond area. For the
geometry shown, this has been accomplished using the finite element
method for each of several debond lengths. The results of the analysis
are shown in Figure 28 where the strain emergy is plotted against the
debond area, The inverse square root of the slcpe of this curve was
then used with Equation 81 to produce the parametric design curve
shown in Figure 29. This curve represents the debonding failure
criterion {or end pressure loadings on an axisymmetric elastic rocket
grain bonded to a rigid casing.

Since it is well-known that most solid rocket fuels are at best
linearly viscoelastic, the above analysis would be improved considerably
by assuming the grain to be a linear viscoelastic material, Although
it is again theoretically possible to calculate the quantities necessary

" for use with the power balance, the viscoelastic nature of the grain
causes the stress and strain fields to be time-dependent, thereby
complicating the analysis considerably. In this case Equation 81
is no longer applicable. Rather we must employ the more general version
of the power balance as given by Equation 74. If the various temms of
this equation could then be calculated, the use of the power balance as
a criticality condition would result in an expression from which one
could obtain the entire time-history of the debond.
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Aa _ f{\a)
5.0 0.178
1.5 0.139
.0 0.107
15.0 0:071
22.% 0.046
- 0.000

Table 1. Interlayer correctien functions.
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Whereas the applicaticn of the power balance in predicting the
fracture threshold is reasomably straightforward, "the calculations
necessary for its use are often prohibitive for the general debond
geametry. As indicated in the preceding paragraph, this is especially
true when the problem is further complicated by including the effects
of viscous dissipation as one should when considering viscoelastic
materials. Thus, as in the case of the spherical flow model developed
to study cohesive fracture in viscoelastic materials, a simple model
has been devised which, it is felt, leads to at least representative
results for the debonding proces. insofar as viscoelastic dependence
is concerned. Since *he anziy "~ “ this model demonstrates clearly
many of the principles that hi .\ discussed in this section, it
is appropriate to include the analysis at the present time.

! Consider a linear viscoelastic beam of infinite length which is bonded
to a rigid substrate along its entire length with the ¢xception of a
rortion of length Za0 which has debonded. A staticnary, rectangular
Cartesian coordinate system x, ¥, z is oriented as shown in Figure 30 so
that the origin is at the center of the debond and the x-axis coincides
with the axis of the beam. At time t = 0, a pressure q(t), where

q(t) = 0 for t < 0,is applied within the debond causing it to propagate
syrmetrically at some time te 2 0 so that the edges of the debond are

at |x| = a(t) for all times. Clearly for t < t; the relationship

a(t) = a, is satisfied. Neglecting inertia effects and using beam
theory, it is a simple matter to solve for the beam deflection w and

the stress 6x and strain €y within the beam. Because of the viscoelastic
nature of the beam material, these quantities are functions of time and

are given by

2 2.2
Wix, t) = [[" 'zjl(t)] ] [L'I(t)] (82a)
y
6, (x,1) = —‘1%% [3x% - a%(t)] (82b)
[-2p3x? - 21| | -1
ot 0 = - ) (82¢)
y
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; i where
2
o3 e
E o) = UUES) ST )] = a0, f : ;(%tr a(ddr  (83)
i
5 . and I is the mement of inertia of the beam cross-section about the y-axis
i and L 1 derotes the inverse Laplace transform. In equation (83), the bar
over a function denotes the Laplace transform of that function, S is the
transform parameter, D (t) is the creep campliance of the material and

- Dg is defined as Dg crp(o ).

As a criterion for debonding of the beam, an application is made of
the thermodynamic power balance which, neglecting the kinetic energy,
can be written as

TN Wy

g ]

I = F + 2D + SE (84)

where, for the present problem,

. aft)
1 = 28 f dx Z Qo) ﬂi%:;-lldr (852)
g a(t) v ge_(x, 1)
F+2D= 2 6, (X, 1) =X d 85b
H‘ Lh/2 W 0 '/; A a1 ) S
3 d a(t) 5
SE = Za-t-: j‘; Y adx = 2% a2 (t) (85¢)

In Equations 85 h is the depth of the beam, the dot denotes differen-
tiation with réépect to time and Ya is considered to be constant with
respect to time. Also it should be noted in Equations 85a and 85b that it
is necessary to integrate with respect to time and debond area or beam
volume first and then differentiate with respect to time to take into
account the ci:ange in debord area and beam volume with time. Substi-
tuting from Equation 82a ‘'nto Equation 85a results in the following
expression for the power input at the boundaries
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Similarly, substituting Equations (82b, c) into equation(85b) results in
a(t) t
g & [ &) aond ot 2@ o} &
) 4

- 00

F+2D

t
R%;é(t) [ awisto - 1§ s - (I}
(87)
1 D 2 2y 2 i - 2eIrim) a
+ Igr;'Q(t) p [3x* - a®(t)] 57 X - 2 Wit}

. -1
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. t
- Tg%; 2® [ wplo - o) et - HOIORL

It is now a simple matter to substitute the appropriate expressions into
the power balance equation (84) to obtain
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a(y) | 2 j‘ (3a’(®) - @I 5 fq(r) Ba’(o) - &’ { dr

-3 j -*’-‘lgl [at) - a*M)2L () dr - 721 0 (88)

y Ya

where ,L"l(t) is given by equation (83). Equation (88) is obviously
satisfied it the crack does not rum, i.e., if .;.(t) = 0. However, cetting
the bracketed temm equal to zero results in an integral relation for a(t)
which yields yet another solution. This solution is the time history of
the debond growth.

The time required to initiate debonding of the beam for a partiéular
loadirg q(t) cwa be obtained from equation (88) by noting that at the
time of initiation a(t) = ag- Setting the bracketed term in equation (88)
equal to zero and a(t) and a(r) in the integrals equal to ay, results
in the expression

t 91 v
Seos B
,[.,, L™ ) -‘anT‘ s . +aa )
(o]

where again L'l(r) is given by equation (83). Solving equation (89) for
t yields the time to initiation of debonding as a function of the load q(t)
the initial debond length ay, the material properties and beam geometry,
and the energy necessary to create new adhesive fracture surface y a°

It is of interest to evaluate equations (88) and (89) for two
particular loadings, namely a pressure applied as a step-function in time
and a pressure applied linearly with time.

Step-Applied Pressures 4(t) = agH(t):
The substitution of q(t) = qOH(t)' into equation (83) results in

IS (t) (0)

qOncrp




Substitution of this expression into equation (89) then gives

91 vy

t
4’ f Depp() 8 —Lg2 : (92)

)

where (1) is the Dirac delta function. The sifting property of the delta
function and the fact that Dcrp(r) £ 0 for v < 0 results in the reduction
of equation (91) to

2 181 Y,
e 92)
6 g
for all t > 0, Thus, one deduces that debonding is initiated instantly,
that is, at t = 0, if q is greater than or equal to the q defined by
equation (92). If this is the case, then the time-history of the debond
for t > 0 can be found from equation (88). Substituting the appropriate
expressions into this equation and setting the bracketed temm equal to
zero yields, after a series of manipulations, an integral equaticn from
which one can solve for a(t) for t > 0. This integral equation is given

by

ng{ 2[3a%(t) - aOZ]2 - 31a’(t) - aozlz}

(93)
; a 1441_ v.
-8 chrp(r)[Saz(t) - a%(1)]a(r)a(r)dr = —%ﬁ
0 q0

Since what is of primary interest is the initial velocity of propagation of
the debond, equation (93) is differentiated twice with respect to time to

arrive at
g crp

where it has been assumed that a(t) and a(t) are both nonzero quantities
tor t > 0. Thus, since debonding is initiated at t =0, the
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initial velocity of propagation is given by

[ ] . +
5 (0+) " ZDcm(o ) :
ay SDg (95)

Thus, it is seen that the simple beam model proposed does not predict a
smooth transition during the acceleration from zero debond velocity at
t = 07 to the initial debond velocity at t = 0'. Also it is noted that
Equation 94 is not entirely satisfactory since for larger times the
velocity of propagation of the debond could become negative for certain
materials.

Constant Pressure Rate, q(t) = qytH(t)

Substituting q(t) = thH(t) into Bquation 83 1leads to the
result

L'l(t) = (1) ¢h) (96)

9% Dcrp
where
D\_,rp(l)(t) - J{ Derp(1)d (@7)

Using Equation 96 with Equation 89, the time to the initiation of
debonding can be found by solving the equation

91 v
(2) a
D t) =
crp a3, (98)
where
Dy « ;
Derp ~ (B) j)‘ fo Do yp(&)dz dr (99)
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